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We examine a few computational geometric problems concerning the structures of poly-
mers. We use a standard model of a polymer, a polygonal chain (path of line segments) in
three dimensions. The chain can be reconfigured in any manner as long as the edge lengths
and the angles between consecutive edges remain fixed, and no two edges cross during the
motion. We discuss preliminary results on the following problems.

Given a chain, select some interior edge uv, defining two subchains which are adjacent to
uv. We keep the two subchains individually rigid and rotate one around uv while leaving the
other fixed in space, while maintaining the vertex-angles at uv. We call this motion an edge
spin at uv. An O(n2) algorithm for this problem is given as well as an�(n log n) lower bound
on the time complexity.

In determining whether a chain can be reconfigured from one conformation to another,
it is useful to consider reconfiguring through some canonical conformation. In our three-
dimensional case, the most obvious choice is to flatten a chain into the plane. However, we
demonstrate that determining if a given chain can be reconfigured into the plane without self-
intersecting is NP-hard, even if the restriction that it must lie monotonically is added. We then
provide an O(n) algorithm to decide if a chain has a non-crossing convex coil conformation
(where all angles turn in the same direction), although we cannot yet decide if a sequence of
motions to reconfigure a chain into a convex coil conformation exists.

KEY WORDS: polymer conformations, polymer motions, macromolecule conformations,
edge spin, flattening

1. Introduction

During the past several years, questions regarding reconfiguring chains, polygons,
and trees have received widespread interest in the computational geometry community
and literature [1]. Most of these questions deal with unfolding a linkage, in other words,
straightening chains, convexifying polygons, or flattening trees, all while maintaining
the lengths of all edges and not allowing self-intersections during the motion. The idea
is that if two conformations of the same chain can each be reconfigured into the same
canonical conformation (a straight chain, convex polygon, or flattened tree), then be-
cause the motions are reversible, it is possible to reconfigure one conformation into the
other via the canonical one.
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Figure 1. The two possible conformations of cyclohexane, the six-atom carbon ring C6H12. Only the
carbon atoms are drawn; the hydrogen atoms are omitted. Left: the “boat” conformation, which has enough

freedom to move to other similar boat conformations. Right: the “chair” conformation, which is rigid.

The most famous problem in this field, which stumped several mathematicians
for almost ten years, was just recently closed: can all planar chains (and polygons) be
straightened (or convexified) in the plane? This question was recently answered in the
affirmative by Connelly et al. [2]. Other results include demonstrating that some three-
dimensional chains are unstraightenable [3–5], and that all chains can be straightened in
four dimensions [6].

The applications of these questions are numerous, including robot arm path plan-
ning [7] and wire and sheet metal bending [8], but the application with which we are
concerned here is of mapping conformation spaces of molecules. The chemistry, biol-
ogy, and physics communities have long been studying polymers, molecules of often
several thousand atoms in length, in order to understand how they fold and to predict
their final conformation. The objectives are rather diverse, including straightening poly-
mers to make more resilient rubber [9], efficient drug design [10], and understanding the
structure of DNA [11]. Researchers have been using Monte Carlo techniques to approxi-
mate the minimum energy polymer foldings [12] with some degree of success, although
this problem has been recently proven to be NP-hard [13]. Due to these difficulties,
physicists have also taken to simplifying the problem by imposing restrictions, most no-
tably by restricting the protein to lie on a lattice as opposed to a continuous space [14],
although finding the minimum energy conformation on the lattice is also NP-hard [15].

In 1987, Richard Randell designed a mathematical framework for geometrically
and topologically mapping the conformation space of molecules [16]. His research pro-
vided topological explanations of chemical phenomena, such as demonstrating that the
conformation space of cyclohexane, the six-atom carbon ring C6H12, has two distinct
path-connected components [17]. (Randell later discovered that the same calculations
had been made from an algebraic viewpoint a century earlier [18].) Cyclohexane takes
the shape of an equilateral hexagon with all bond angles of about 109.5◦, as illustrated
in figure 1. Randell proves several other interesting results, including that a carbon ring
of fewer than 11 atoms must be unknotted.

In this paper, we use a model similar to the one used by Randell and several others
[10,13] to solve problems concerning polymers. We consider a polymer to be a three-
dimensional chain with fixed edge lengths and fixed angles (vertex-angles) between con-
secutive edges, modelling the fixed bond lengths and bond angles between atoms. Any
such chain can be reconfigured by a vertex-angle preserving motion, meaning that the
edges of the chain are free to move about so long as the edge lengths and the vertex-
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Figure 2. An edge spin of angle φ at uv. Note that due to the fixed vertex-angle at v, B spins about an axis
of rotation collinear with the edge uv.

angles between consecutive edges remain fixed. Furthermore, the chain is not permitted
to self-intersect throughout the motion. An example of a vertex-angle preserving motion
of a chain is illustrated in figure 2.

We begin in section 2 with a discussion of arguably the simplest form of vertex-
angle preserving motion, an edge spin. We continue in section 3 to the question of
reconfiguring one conformation to another via the canonical conformation of a non-
intersecting planar chain. Section 4 concludes and lists directions for future work.

2. The Edge Spin problem

We start our discussion on reconfiguring polygonal chains with fixed vertex-angles
with the following simple motion. Given a chain, select some interior edge uv. This
defines two subchains A and B such that u ∈ A and v ∈ B. We can keep the two
subchains individually rigid and, leaving A fixed in space, rotate B around uv (while
maintaining the fixed vertex-angle at v) by some angle φ. We call this motion an edge
spin of angle φ at uv. An illustration is in figure 2.

The remainder of this section deals with the following problem.

Problem 1 (Edge Spin). Given a three-dimensional polygonal chain, a selected edge
uv, and an angle φ, can we perform an edge spin of angle φ at uv without causing the
chain to self-intersect?

We now sketch an algorithm to answer the above question, followed by a proof of
a lower bound on the complexity of the problem.

2.1. An algorithm to solve the Edge Spin problem

We give a quadratic time algorithm to solve the Edge Spin problem.

Theorem 1. The Edge Spin problem is solvable in O(n2) time and O(n) space, where n
is the number of edges in the chain.
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Proof. The main idea is to pretend to spin one of the subchains around uv completely
(by angle 2π ), and examine all self-intersections which would occur along the way. We
compute the angle of rotation at which intersection occurs during the motion, and if none
occur before angle φ is reached, the edge spin can be performed.

To compute the intersections during the spin of angle 2π , consider any plane P
incident to uv. Without considering intersections between the two subchains, pretend
to spin subchain A around uv, and trace where the subchain would sweep through P
during the motion. Do the same for subchain B. Since a line segment rotating about a
line sweeps out a portion of a hyperboloid, we have two arrangements of O(n) hyperbolic
arcs each in the plane.

Note that spinning subchain A is equivalent to spinning subchain B, modulo a
rotation of the entire chain, because both rotations are about the same axis, edge uv.
Thus if executing an edge spin causes an intersection, there will be an intersection of
the two arrangements. We can compute if any arcs corresponding to A intersect an arc
corresponding with B with brute force in O(n2) time. Faster yet, we can also use the
intersection algorithm of Bentley and Ottmann [19]. This yields a time complexity of
O(n log n+ k), where k is the sum of the self-intersections in each arrangement and the
intersections between arrangements. (Although k could be as large as�(n2) in the worst
case, it would prove faster in practice than brute force.) Regardless of the method used
to detect intersections, as each intersecting pair of arcs is detected, we determine the
angle of rotation required before such an intersection would occur during the edge spin.
Thus, the entire algorithm finishes in O(n2) time. Furthermore, once we detect a pair of
intersecting arcs and determine the angle of rotation required, we will never again need
to examine that intersection. Therefore, we do not need to store intersections already
detected, so we require only linear space by using brute force or Bentley and Ottmann.�

Rather than asking the Edge Spin problem for a particular φ, one may wish to know
if a complete edge spin (of angle 2π ) can be performed. We show that this problem may
be easier by demonstrating a faster algorithm.

Theorem 2. For φ = 2π , the Edge Spin problem is solvable in deterministic time
O(n2α(n) log2 n) and space O(n2α(n)) and in expected time O(n2α(n) log n) and space
O(n2α(n)), where α(n) is the slow-growing inverse of the familiar Ackermann function.

Proof. We repeat the above technique as in the proof of theorem 1. However, for this
choice of φ, we do not have to check to see which intersection occurs first in our arrange-
ments; if any intersection at all exists between the arrangements, the edge spin cannot be
performed. Given two arrangements of hyperbolic arcs which pairwise intersect at most
twice, we can detect an intersection between the arrangements in the stated deterministic
time and space using algorithms of Agarwal and Sharir [20] and of Guibas et al. [21].
By replacing the latter with the algorithm of Chazelle et al. [22], we can achieve the
stated expected time and space. �
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2.2. A lower bound for the Edge Spin problem

In this subsection, we prove the following result.

Theorem 3. The time complexity of the Edge Spin problem on a chain of n edges is
�(n log n) under the algebraic decision tree model of computation.

We prove theorem 3 with a reduction from Element Uniqueness, which states as
follows.

Problem 2 (Element Uniqueness). Given a set S = {s1, . . . , sn}, is every element
unique? In other words, does i �= j imply that si �= sj?

The time complexity of the Element Uniqueness problem is known to have
an �(n log n) lower bound under the algebraic decision tree model, as shown by
Ben-Or [23]. Given a set S, we create a polygonal chain and select an edge in linear time
such that answering the Edge Spin problem also answers Element Uniqueness on S.

2.2.1. Construction of a tree
Let N be the number of elements in the set S. We consider all elements to be

strictly positive. If this is not the case, then we can add some suitable integer to each
element in the set (which can be done in linear time).

As the chain we will build is difficult to visualize, it will be far easier first to explain
how a tree can be constructed in the xz-plane to answer our query. We will not address
the issue of constructing the tree; rather, we will later show how to construct a chain in
linear time which behaves in an identical manner.

For the purposes of terminology, we discuss the tree in three parts, the “base” and
the left and right “gadgets”. The main idea is that the base and the left gadget will remain
stationary while the right gadget spins about an edge on the base. If and only if element
uniqueness holds, the two gadgets will not collide.

We begin our construction of the tree by drawing the base, a three-edge chain from
(0, 0, 0) to (0, 0,−1) to u = (N + 3/2, 0,−1) to v = (N + 3/2, 0, 0).

For the left gadget, we first draw a vertical edge from (0, 0, 0) to (0, 0,max{S}).
We call this edge the stem of the gadget. For each si , we connect a new edge
〈(0, 0, si ), (i, 0, si )〉 to the stem. In other words, from the stem we build an edge ex-
tending to the right at height si , of length i. If si is not unique, then we shall have two
overlapping edges, but for simplicity sake, we allow the intersection. (We will worry
about this later when we create the chain.)

We create the right gadget similarly, except each edge has length N−i+1. We first
draw the stem from (N + 3/2, 0, 0) to (N + 3/2, 0,max{S}). For each si , we connect
a new edge 〈(N + 3/2, 0, si ), (2N + 3/2, 0, si )〉 to the stem. In other words, from the
stem we build an edge extending to the right at height s, of length N − i + 1. (Again,
ignore the problems of intersecting if si is not unique.)

Examples are shown in figures 3 and 4.
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Figure 3. Left: the tree constructed for a set with no repeated elements, {2, 1, 5, 8, 7, 6}. The edge spin
occurs at uv. Right: the tree in mid-spin, after a rotation of π .

Figure 4. Left: the tree constructed for a set with a repeated element, {2, 1, 5, 8, 7, 5}. The edge spin occurs
at uv, and the endpoints of the overlapped edges are encircled. Right: the tree in mid-spin, after a rotation

of π . The bold segment is where the collision occurs.

We now perform a complete edge spin (of angle 2π ) at uv. Since the tree is or-
thogonal, every edge will stay at the same height during the motion. Therefore, the only
chance for collision is that two edges of the same height, and thus corresponding to el-
ements of the same value, collide. Note that the two stems are distance N + 3/2 apart;
therefore, if and only if the total lengths of two edges of the same height on opposite
gadgets are at least N + 3/2 will there be a collision. Since the lengths of the two edges
corresponding to the same vertex sum to N + 1, we can only have a collision if two
edges corresponding to different elements collide. Note that this will necessarily happen
if there exist two elements si and sj (i < j) with the same value. Then the left gadget
edge corresponding to sj has length j , and the right gadget edge corresponding to si has
length N − i. Since i < j , the two edges have total length at least N + 2. Since si = sj ,
the edges are at the same height, and we have a collision. Next we create a chain with
the same properties.

2.2.2. Construction of the chain
We now create a three-dimensional chain which does not self-intersect and behaves

exactly like the tree. In fact, from the viewpoint of y = +∞, the tree and the chain look
identical.

The base is the same, a three-edge subchain from (0, 0, 0) to (0, 0,−1) to u =
(N+3/2, 0,−1) to v = (N+3/2, 0, 0). For the left gadget, create the first edge similarly
to the tree; draw an edge up from (0, 0, 0) to (0, 0, s1), and then horizontally to (1, 0, s1).
To avoid intersections in the chain, we exploit the third dimension, y. We draw an edge
back to a point just in front of the stem, at (0,−1/(4N), s1). Now we are free to draw
a vertical edge from (0,−1/(4N), s1) to (0,−1/(4N), s2), which places us at height
s2 in preparation for the next two edges, to (2, 0, s2) and back to (0,−2/(4N), s2). We
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Figure 5. Oblique view of the base and left gadget, for the set (2, 1, 5, 8, 7, 5). Note there are two pairs of
edges at height z = 5, corresponding to the repeated element. (The edge spin occurs at uv.)

Figure 6. View of the chain from above (z = +∞). Not to-scale; y-direction is magnified for clarity. (The
edge spin occurs at uv.)

continue this pattern drawing edges to (0,−(i−1)/(4N), si ), (i, 0, si ), (0,−i/(4N), si ),
and so on until the gadget is complete. We construct the right chain in the exact same
fashion, except that we reverse the labelling of the elements from s1, . . . , sn to sn, . . . , s1.

An illustration of the left gadget and the base is in figure 5; a bird’s eye view of the
whole chain is in figure 6.

We perform a complete edge spin (of angle 2π ) at uv. Note that since all edges
are within radius N of their respective gadget stem, and the stems are N + 3/2 apart, no
part of either gadget will enter a cylinder of radius 1/2 around the stem of the opposite
gadget. Since all the vertical edges are contained in a cylinder of radius 1/4 around the
stems, only the horizontal edges corresponding to elements in the set S can collide. Thus,
the behavior of the chain mimics that of the tree exactly. The entire chain is illustrated
in figure 7.

3. Reconfiguring chains into the plane

We may also wish to consider not just a single edge spin, but rather whether or not
we can reconfigure a chain from a given conformation to a certain goal conformation.
An intuitive approach is to ask if both can be reconfigured into some canonical confor-
mation. If so, then because the motions are reversible, one can reconfigure the chain
from the given conformation to the canonical conformation, and then reconfigure from
the canonical conformation to the goal conformation. In the computational geometry
literature where the angles between edges are free to change, the canonical conforma-
tion for chains is a straight segment. Obviously, this is unachievable for chains with
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Figure 7. Oblique view of the chain for the set (2, 1, 5, 8, 7, 5). If an edge spin is performed at uv, the
edges indicated at the arrows, which correspond to the repeated element 5, will collide.

fixed vertex-angles between edges, so a natural question to ask is whether or not we can
reconfigure a three-dimensional chain such that it lies flat in the plane without crossing
itself. (We do not claim that one planar conformation can be reconfigured to any other,
but rather that simply reconfiguring a chain into the plane is a good start.) In this section,
we discuss this problem as well as two variants.

3.1. Non-crossing planar conformations

We focus on the following.

Problem 3 (Planar Flattening). Given a polygonal chain in three dimensions, does there
exist a sequence of vertex-angle preserving motions which place the chain into a non-
crossing planar conformation?

As mentioned above, an efficient algorithm for this problem could prove to be very
useful. However, we demonstrate Planar Flattening to be NP-hard via a reduction from
Partition, which reads as follows.

Problem 4 (Partition). Given a set of integers S, can it be partitioned into two disjoint
sets Sa and Sb such that

∑
(s: s ∈ Sa) =∑(s: s ∈ Sb)?

Theorem 4. Planar Flattening is NP-hard.

Proof. Given a set S, we show that in polynomial time we can create a chain which can
be reconfigured into the plane if and only if the set has a partition.
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Figure 8. The two possible planar conformations of the cage of the chain constructed in the NP-hardness
reduction. The door is the shaded triangle.

Figure 9. The subchain starting at vertex a.

Figure 10. The chain constructed in the proof of theorem 4.

We begin by creating, in the plane, either of the chains in figure 8, where |S| is the
sum of the absolute values of all elements of S. An enumeration will show that these are
the only two planar conformations possible for this chain. We refer to this chain as the
cage and the shaded triangle as the door. We then add to vertex a (as labelled in figure 8)
a long subchain ending in an edge which we call the key. The general idea is to fashion
the chain such that any flattened conformation must have the key placed inside the door,
and then show that the key fits if and only if a partition exists for the set S.

We now create the remainder of the chain from vertex a. We build an orthogonal
subchain, such that every vertex-angle between edges is π/2. We start at vertex a, and
for every element si ∈ S, place an edge moving upward (normal to the plane of the cage)
of length 1/n followed by an edge ei of length si in a plane parallel to the cage, and
repeat. We then place one more edge, an upward edge of length 5, which we call the key.
The subchain is illustrated in figure 9; the entire chain is illustrated in figure 10.

If we wish to collapse our chain to the plane, we can do the following. Con-
sider the subchain as a directed chain. Because of its orthogonality, when the chain
is planar each edge ei will point either directly left or right, and all others up or
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Figure 11. A chain whose key fits in the door.

Figure 12. Left: a monotone chain. Right: a non-monotone chain.

down. Thus the x-coordinate of the final edge, the key, is the x-coordinate of a plus
the sum

∑
(si: ei points right) − ∑

(si: ei points left). Since the door has width
less than 1, and the elements si are integers, the key fits in the door if and only if∑
(si : ei points right) =∑(si : ei points left), solving the Partition problem. This situ-

ation can be examined in figure 11.
If we let all the small edges of length 1/n lie in a northerly (increasing in

y-coordinate) direction, as in figure 11, then the subchain cannot self-intersect. The
only possible self-crossing in the entire chain occurs at the key, meaning that there exists
a planar conformation if and only if a partition exists. This completes the reduction. �

(Due to its relevance to the reconfiguration of linkages, it is worth pointing out that
this proof is similar to the NP-hardness proof of Ruler Folding [7].)

3.1.1. Non-crossing monotone conformations
If the Planar Flattening problem is NP-hard, it might be easier to decide more

restrictive versions of the problem. We may also wish to consider whether or not a chain
has a monotone conformation in the plane. A planar polygonal chain is monotone if
every vertical line intersects the chain in at most one point or one segment. In other
words, as one traverses the chain edge by edge, the chain always progresses to the right.
Examples of a monotone chain and a non-monotone chain are in figure 12.

Problem 5 (Planar Monotone Reconfiguration). Given a polygonal chain in three di-
mensions, does there exist a sequence of vertex-angle preserving motions which place
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Figure 13. A chain which has a monotone conformation. Here a3 = a1 + a2 + a4, solving the Partition
problem.

the chain into a non-crossing planar monotone conformation?

Despite its apparent simplicity, this problem is also NP-hard, which we demon-
strate in a similar fashion to the reduction above.

Theorem 5. Planar Monotone Flattening is NP-hard.

Proof. Suppose we have a Partition problem on some set S. We create a chain similar
to the one in figure 13, such that the angles ai are proportional to the elements si , such
that ai = si/|S| where |S| is the sum of all elements. Note that the chain can only be
placed in a monotone conformation if the edges e and f are extremely close to parallel,
which we can specify to be less than 1/|S|. If e and f are almost parallel in this fashion,
the sum of the vertex-angles turning to the left minus the vertex-angles turning to the
right is less than 1/|S|, which solves the Partition problem. Furthermore, if e and f are
near parallel, then the chain is guaranteed to be monotone. Since the sum of the ai terms
is at most 1 rad, the chain cannot progress to the left (and therefore violate monotonicity)
except at the edges adjacent to e and f .

As an aside, it is worth noting that in the most widely used models of com-
putation, such as the Real RAM model, trigonometric functions are not computable.
Therefore, building a chain with specific angles is not possible in our model of com-
putation since computing the coordinates of the vertices would involve trigonometry.
We can easily circumvent this shortcoming by never referring to the actual angles, but
by approximating the sine and cosine of the angle 1/|S| and using identities (such as
cos(A + B) = cosA cosB − sinA sinB) to derive a consistent approximation for the
entire chain. �

3.1.2. Reconfiguring into a convex coil
We say that a convex coil is a non-crossing planar chain composed of only right or

left turns. We would like to answer the following problem.

Problem 6 (Convex Coil Reconfiguration). Given a polygonal chain in three dimen-
sions, does there exist a sequence of vertex-angle preserving motions which place the
chain into a convex coil conformation?
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Figure 14. A chain which is spiralling outward.

Figure 15. A chain which is spiralling inward.

Unfortunately, the above problem is not yet solved, but the question of whether
such a conformation exists for a given chain can be answered fairly easily. Because
all vertex-angles are fixed and turn either all right or all left, we have no freedom in
choosing where to place the edges. All we can do is draw the chain in the plane with all
right or all left turns and check for intersections.

We can use the algorithm of Balaban [24], which can report whether of not a col-
lection of n line segments contains an intersection in O(n log n) time and O(n) space.
This is not necessary, however, as the structure of a convex coil gives us a great deal of
extra information. We now show how to determine whether or not a chain with fixed
vertex-angles has a planar convex coil conformation in O(n) time.

We draw the chain in the plane starting at one endpoint and drawing one edge
successively after the other, always checking if the last edge drawn intersects any of
the edges which precede it (which have already been drawn). We identify two distinct
stages. Initially, each new edge will lie outside the convex hull of the drawn portion
of the chain. In this case, there is no possibility for collision with the drawn portion
of the chain. We say that the chain is spiralling outward in this case, as in figure 14.
When a new edge is drawn inside the convex hull of the chain, collisions might occur.
Furthermore, from this point onward, all edges will lie inside the convex hull, since a
left turn is needed to escape. Here the chain is spiralling inward, as in figure 15.

Our algorithm works as follows. As long as the chain is spiralling outward, we
continue, because no self-intersections are possible in this stage. Our only interest is
detecting when the chain begins to spiral inward. This is easily accomplished by running
Melkman’s O(n) incremental convex hull algorithm [25], insuring that each drawn edge
expands the convex hull.
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Figure 16. Determining intersections when the chain is spiralling inward. Visibility polygon is shaded.

Figure 17. The chain with a new edge drawn since figure 16.

When we detect that the chain is spiralling inward, we begin checking for inter-
sections. We start by computing the polygon consisting of all points visible from the
endpoint e of the last edge in the convex direction. We call this polygon the visibility
polygon, as illustrated in figure 16. This polygon is computable in O(n) time by an al-
gorithm of Avis and El-Gindy [26], but is more easily computed with the help of the
following observation.

Because the chain consists of all right turns, the visibility polygon consists of a
chain of reflex vertices (of edges 1 and 2 in figure 16) in the middle of the chain, followed
by a chain of convex vertices (of edges 3–7) which includes e. Therefore, once we find
one reflex vertex visible from e (if one exists), we know that the reflex chain of the
visibility polygon must lie around this vertex and that the convex chain of the visibility
polygon is adjacent to e. We just advance along these chains until we can no longer see e
to obtain the polygon.

The visibility polygon contains all the edges that any new edges could possibly
intersect, since getting to any edge in the chain but not in the polygon would require
a left turn. The remainder of the algorithm is quite simple. We keep the edges of the
polygon in a queue, such as in figure 16. For each new edge added, our visibility polygon
changes. The new edge is added to the end of the queue (edge 8 in figure 17), and we
advance the top of the queue to find the new first edge of the polygon. If the first edge of
the visibility polygon has been intersected, we stop and report failure. If the first edge
(edge 1) is neither intersected nor visible in a convex direction, we pop it from the queue
and examine the next (edge 2). We repeat this procedure until we find an edge which is
visible or intersected. In figure 17, the new polygon consists of edges 2–8.
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Figure 18. The chain with two new edges drawn since figure 17.

Figure 18 illustrates the same example a few steps later. Eventually, we will either
find an intersection or draw the entire chain, answering the question.

4. Conclusion

We described an O(n2)-time algorithm to solve the Edge Spin problem and a lower
bound of �(n log n) on the time complexity of the problem. We also provide near-
optimal algorithms for the problem when the angle of the edge spin is 2π . Clearly our
discussion suggests the following open problem.

Open problem 1. Tighten the complexity bounds on the Edge Spin problem.

There are several other relevant questions which we have not yet mentioned. We
list a few below.

Open problem 2 (Preprocessing). Computing the feasibility of edge spins has a lower
bound on the time complexity �(n log n). But can a chain be preprocessed so that
repeated queries of edge spin feasibility can be answered quickly?

Open problem 3 (Reconfiguration). Flattening a chain into the plane is NP-hard. Is it
easier to place a chain into other canonical structures, such as on the convex hull of a
polyhedron?

Several beautiful geometric problems in this area arise when more than one chain
is considered. We give one such example.

Open problem 4 (Bonding). Given one flexible molecule A and one rigid molecule B
with one or more bonding sites, can A be reconfigured to bond with B? Can it be done
while respecting certain constraints?
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